18  

В трактате «О горении вообще» (1777) он подробно развивает свою теорию. Всякое горение есть соединение тела с кислородом; результат его — сложное тело, а именно «металлическая земля» (окисел) или кислота (ангидрид по современной терминологии).

Теория горения повела к объяснению состава различных химических соединений. Уже давно различались окислы, кислоты и соли, но строение их оставалось загадочным. Общий результат их можно сформулировать так: Лавуазье дал первую научную систему химических соединений, установив три главные группы — окислы (соединения металлов с кислородом), кислоты (соединения неметаллических тел с кислородом) и соли (соединения окислов и кислот).

Десять лет прошло со времени первой работы Лавуазье, а он почти вовсе не касался теории флогистона. Он просто обходился без нее. Процессы горения, дыхания, окисления, состав воздуха, углекислоты, множество других соединений объяснились без всяких таинственных принципов совершенно просто и ясно — соединением и разделением реальных весовых тел. Но старая теория еще существовала и влияла на ученых.

В 1783 году Лавуазье напечатал «Размышления о флогистоне». Опираясь на свои открытия, он доказывает полнейшую ненужность теории флогистона. Без нее факты объясняются ясно и просто, с нею начинается бесконечная путаница. «Химики сделали из флогистона туманный принцип, который вовсе не определен точно и, следовательно, пригоден для всевозможных объяснений, иногда это весомый принцип, иногда — невесомый, иногда — свободный огонь, иногда — огонь, соединенный с землею; иногда он проходит сквозь поры сосудов, иногда они непроницаемы для него; он объясняет разом и щелочность и нещелочность, и прозрачность и тусклость, й цвета и отсутствие цветов. Это настоящий Протей, который ежеминутно меняет форму».

«Размышления о флогистоне» были своего рода похоронным маршем по старой теории, так как она давно уже могла считаться погребенной.

Наконец, знание водорода и продукта его окисления дало Лавуазье возможность положить главный камень в основание органической химии. Он определил состав органических тел и создал органический анализ путем сжигания углерода и водорода в определенном количестве кислорода. Как утверждает Н. Меншуткин: «Таким образом, историю органической химии, как и неорганической, приходится начинать с Лавуазье».

ОСНОВНОЙ ЗАКОН ЭЛЕКТРОСТАТИКИ

Электрические явления постепенно теряли свой первоначальный характер отдельных разрозненных забавных явлений природы и постепенно образовывали некое единство, которое существующие теории пытались охватить несколькими основными принципами. Наступало время перехода от качественных исследований к количественным.

Такое направление исследований отчетливо выражено в работе 1859 года петербургского академика Ф. Эпинуса (1724–1802).

Эпинус в основу своего математического рассмотрения кладет следующие принципы: каждое тело обладает в своем естественном состоянии вполне определенным количеством электричества. Частицы электрического флюида взаимно отталкиваются и притягиваются к обычной материи. Электрические эффекты проявляются, когда количество электрического флюида в теле больше или меньше того, которое должно быть в естественном состоянии.

Эпинус делает предположение: «…определить эти функциональные зависимости я пока что не решаюсь. Впрочем, если бы понадобилось произвести выбор между различными функциями, то я охотно утверждал бы, что эти величины изменяются обратно пропорционально квадратам расстояний. Это можно предположить с некоторым правдоподобием, ибо в пользу такой зависимости, по-видимому, говорит аналогия с другими явлениями природы». По пути Эпинуса пошел Генри Кавендиш (1731–1810), который в своей статье от 1771 года принимает гипотезы Эпинуса с одним изменением: притяжение двух электрических зарядов считается обратно пропорциональным некоторой степени расстояния, пока не уточняемой.

Кавендиш с помощью математических рассуждений делает вывод: если сила взаимодействия электрических зарядов подчиняется закону обратных квадратов, то «почти весь» электрический заряд сосредоточен на самой поверхности проводника. Тем самым намечается косвенный путь установления закона взаимодействия зарядов.

Главная трудность установления «закона электрической силы» состояла в том, чтобы найти экспериментальную ситуацию, в которой пондеромоторные силы совпадали бы с силами, действующими между элементарными зарядами.

  18  
×
×